CHAPTER

MECHANICS OF MATERIALS

Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf

Lecturer: Nazarena Mazzaro, Ph.D.
Aalborg University
Denmark

Analysis and Design of Beams for Bending

MECHANICSOF MATERIALS

Analysis and Design of Beams for Bending

Part 1: 45 min
Introduction
Shear and Bending Moment
Diagrams
Example 5.01
Sample Problem 5.1
Sample Problem 5.2
Relations Among Load, Shear, and
Bending Moment
Example 5.03
Sample Problem 5.3
Sample Problem 5.5
Part 2: 30 min
Design of Prismatic Beams for Bending
Sample Problem 5.8
Singularity Functions
Example 5.05
Exercises

MECHANICSOF MATERIALS

(b)

- Objective - Analysis and design of beams
- Beams - structural members supporting loads at various points along the member
- Transverse loadings of beams are classified as concentrated loads or distributed loads
- Applied loads result in internal forces consisting of a shear force (from the shear stress distribution) and a bending couple (from the normal stress distribution)
- Normal stress is often the critical design criteria

$$
\left.\sigma_{x}=-\frac{M y}{I} \quad \sigma_{m}=\frac{|M| c}{I}=\frac{|M|}{S}\right\} \quad \begin{gathered}
\text { Elastic Flexure } \\
\text { Formulas }
\end{gathered}
$$

Requires determination of the location and magnitude of largest bending moment

Classification of Beam Supports

Statically
Determinate
Beams

(a) Simply supported beam

Statically
Indeterminate
Beams

(d) Continuous beam

(b) Overhanging beam

(e) Beam fixed at one end and simply supported at the other end

(c) Cantilever beam

(f) Fixed beam

MECHANICS OF MATERIALS

Shear and Bending Moment Diagrams

- Determination of maximum normal and shearing stresses requires identification of maximum internal shear force V and bending couple M .
- Shear force and bending couple at a point are determined by passing a section through the beam and applying an equilibrium analysis on the beam portions on either side of the section.
- Sign conventions for shear forces V and V^{\prime} and bending couples M and M^{\prime}-> positive

(a) Internal forces (positive shear and positive bending moment)

MECHAN|CSOOF MATERIALS

Example 5.01

Draw the shear and bending-moment diagrams for a simply supported beam $A B$ of span L subjected to a single concentrated load P at it midpoint C

Example 5.01

(e)
-Determination of the reactions $R A=R B=1 / 2 P$
-Cut the beam at D and plot free body diagrams with positive V and M . Equilibrium equations:
$\uparrow \sum F y=0 ; R_{A}-V=0 ; V=\underline{R_{A}=1 / 2 P}$
$\int \sum M_{D}=0 ;-R_{A} x+M=0 ; M=R_{A} x=P x / 2$
$\uparrow \sum F y=0 ; R_{B}+V=0 ; V=-R_{B}=-1 / 2 P$
$\int \sum M_{E}=R_{B}(L-x)-M=0 ; M=P(L-x) / 2$

V is constant between concentrated loads and M varies linearly

SOLUTION:

- Treating the entire beam as a rigid body, determine the reaction forces
- Section the beam at points near supports and load application points. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces and bending couples
- Identify the maximum shear and bending-moment from plots of their distributions.
- Apply the elastic flexure formulas to determine the corresponding maximum normal stress.

MECHAN|CSOE MATERIALS

Sample Problem 5.1

SOLUTION:

- Treating the entire beam as a rigid body

$$
\begin{aligned}
& \sum F y=0=-20+R_{B}-40+R_{D} \Rightarrow R_{D}=60-R_{B} \\
& \sum M_{B}=0=20 \times 2,5-40 \times 3+R_{D} \times 5 \Rightarrow R_{D}=14 \\
& R_{D}=14 ; R_{B}=46
\end{aligned}
$$

- Section the beam and apply equilibrium analyses on resulting free-bodies

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\sum F_{y}=0 & -20 \mathrm{kN}-V_{1}=0 & V_{1}=-20 \mathrm{kN} \\
\sum M_{1}=0 & (20 \mathrm{kN})(0 \mathrm{~m})+M_{1}=0 & M_{1}=0
\end{array}\right. \\
& \left\{\begin{array}{lll}
\sum F_{y}=0 & -20 \mathrm{kN}-V_{2}=0 & V_{2}=-20 \mathrm{kN} \\
\sum M_{2}=0 & (20 \mathrm{kN})(2.5 \mathrm{~m})+M_{2}=0 & M_{2}=-50 \mathrm{kN} \cdot \mathrm{~m}
\end{array}\right. \\
& V_{3}=+26 \mathrm{kN}
\end{aligned} M_{3}=-50 \mathrm{kN} \cdot \mathrm{~m} .
$$

MECHIANICS OF MATERIALS

Sample Problem 5.1

$\mathrm{V}_{1}=-20, \mathrm{M}_{1}=0 ; \mathrm{V}_{2}=-20, \mathrm{M}_{2}=-50 ; \mathrm{V}_{3}=26, \mathrm{M}_{3}=-50$;
$\mathrm{V}_{4}=26, \mathrm{M}_{4}=28 ; \mathrm{V}_{5}=-14, \mathrm{M}_{5}=28, \mathrm{~V}_{6}=-14, \mathrm{M}_{6}=0$

- Identify the maximum shear and bendingmoment from plots of their distributions.

$$
V_{m}=26 \mathrm{kN} \quad M_{m}=\left|M_{B}\right|=50 \mathrm{kN} \cdot \mathrm{~m}
$$

- Apply the elastic flexure formulas to determine the corresponding maximum normal stress.

$$
\begin{aligned}
S & =\frac{1}{6} b h^{2}=\frac{1}{6}(0.080 \mathrm{~m})(0.250 \mathrm{~m})^{2} \\
& =833.33 \times 10^{-6} \mathrm{~m}^{3} \\
\sigma_{m} & =\frac{\left|M_{B}\right|}{S}=\frac{50 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}}{833.33 \times 10^{-6} \mathrm{~m}^{3}} \\
\sigma_{m} & =60.0 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

The structure shown is constructed of a W10x112 rolled-steel beam. (a) Draw the shear and bending-moment diagrams for the beam and the given loading. (b) determine normal stress in sections just to the right and left of point D.

SOLUTION:

- Replace the 10 kip load with an equivalent force-couple system at D. Find the reactions at B by considering the beam as a rigid body.
- Section the beam at points near the support and load application points. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces and bending couples.
- Apply the elastic flexure formulas to determine the maximum normal stress to the left and right of point D.

MECHANICS OE MATERIALS

Sample Problem 5.2

SOLUTION:

- Replace the 10 kip load with equivalent forcecouple system at D. Find reactions at B.
- Section the beam and apply equilibrium analyses on resulting free-bodies.

From A to C :

$$
\begin{array}{lll}
\sum F_{y}=0 & -3 x-V=0 & V=-3 x \text { kips } \\
\sum M_{1}=0 & (3 x)\left(\frac{1}{2} x\right)+M=0 & M=-1.5 x^{2} \text { kip } \cdot \mathrm{ft}
\end{array}
$$

From C to D:

$$
\begin{array}{lll}
\sum F_{y}=0 & -24-V=0 & V=-24 \mathrm{kips} \\
\sum M_{2}=0 & 24(x-4)+M=0 & M=(96-24 x) \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

From D to B :
$V=-34$ kips $\quad M=(226-34 x)$ kip $\cdot \mathrm{ft}$

MECHANICS OF MATERIALS

Sample Problem 5.2

- Apply the elastic flexure formulas to determine the maximum normal stress to the left and right of point D.

From Appendix C for a W10x112 rolled steel shape, $S=126$ in 3 about the X - X axis.

To the left of D :

$$
\sigma_{m}=\frac{|M|}{S}=\frac{2016 \mathrm{kip} \cdot \mathrm{in}}{126 \mathrm{in}^{3}}
$$

$$
\sigma_{m}=16.0 \mathrm{ksi}
$$

To the right of D :
$\sigma_{m}=\frac{|M|}{S}=\frac{1776 \mathrm{kip} \cdot \mathrm{in}}{126 \mathrm{in}^{3}}$

$$
\sigma_{m}=14.1 \mathrm{ksi}
$$

- Concentrated loads: V constant

M varies linearly

- Distributed load: V varies linearly M parabola

MECHANICS OF MATERIALS

Relations Among Load, Shear, and Bending Moment

- Relationship between load and shear:

$$
\begin{aligned}
\sum F_{y}=0: & V-(V+\Delta V)-w \Delta x=0 \\
& \Delta V=-w \Delta x \\
& \frac{d V}{d x}=-w \\
& V_{D}-V_{C}=-\int_{x_{C}}^{x_{D}} w d x
\end{aligned}
$$

- Relationship between shear and bending moment:

$$
\begin{aligned}
\sum M_{C^{\prime}}=0: & (M+\Delta M)-M-V \Delta x+w \Delta x \frac{\Delta x}{2}=0 \\
& \Delta M=V \Delta x-\frac{1}{2} w(\Delta x)^{2} \Rightarrow \frac{\Delta M}{\Delta x}=V-\frac{1}{2} w \Delta x \\
& \Delta x \rightarrow 0 ; \frac{d M}{d x}=V \\
& M_{D}-M_{C}=\int_{x_{C}}^{x_{D}} V d x
\end{aligned}
$$

MECHANICSOF MATERIALS

Example 5.03

(a)

Draw the shear and bending moment diagrams for the simply supported beam and determine the maximum value of the bending moment.

SOLUTION:

- $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\mathrm{wL} / 2$
-Determination of V and M at any distance from A :

$$
\begin{aligned}
& V-V_{A}=-\int_{0}^{x} w \cdot d x=-w x \\
& V=V_{A}-w x=\frac{1}{2} w L-w L=w\left(\frac{1}{2} L-x\right)
\end{aligned}
$$

$$
M-M_{A}=\int_{0}^{x} V \cdot d x ; M_{A}=0
$$

$$
M=\int_{0}^{x} w\left(\frac{1}{2} L-x\right) d x=\underline{\frac{1}{2} w\left(L x-x^{2}\right) \Rightarrow M_{\max } \frac{w L^{2}}{8}}
$$

MECHANICS OF MATERIALS

Sample Problem 5.3

SOLUTION:

- Taking the entire beam as a free body, determine the reactions at A and D.
- Apply the relationship between shear and load to develop the shear diagram.

Draw the shear and bending moment diagrams for the beam and loading shown.

Apply the relationship between bending moment and shear to develop the bending moment diagram.

MECHANICS OE MATERIALS

Sample Problem 5.3

SOLUTION:

- Taking the entire beam as a free body, determine the reactions at A and D.
$\sum M_{A}=0$
$0=D(24 \mathrm{ft})-(20 \mathrm{kips})(6 \mathrm{ft})-(12 \mathrm{kips})(14 \mathrm{ft})-(12 \mathrm{kips})(28 \mathrm{ft})$
$D=26 \mathrm{kips}$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$0=A_{y}-20 \mathrm{kips}-12 \mathrm{kips}+26 \mathrm{kips}-12 \mathrm{kips}$
$A_{y}=18 \mathrm{kips}$
- Apply the relationship between shear and load to develop the shear diagram.
$\frac{d V}{d x}=-w \quad d V=-w d x$
- zero slope between concentrated loads
- linear variation over uniform load segment

MECHANICS OE MATERIALS

Sample Problem 5.3

- Apply the relationship between bending moment and shear to develop the bending moment diagram.

$$
\frac{d M}{d x}=V \quad d M=V d x
$$

- bending moment at A and E is zero
- bending moment variation between A, B, C and D is linear
- bending moment variation between D and E is quadratic
- net change in bending moment is equal to areas under shear distribution segments

$$
M_{D}-M_{C}=\int_{C}^{D} V . d x
$$

- total of all bending moment changes across the beam should be zero (108-16-140+48=0)

MECHANICSOF MATERIALS

Sample Problem 5.5

Draw the shear and bending moment diagrams for the beam and loading shown.

SOLUTION:

- Taking the entire beam as a free body, determine the reactions at C.
- Apply the relationship between shear and load to develop the shear diagram.
- Apply the relationship between bending moment and shear to develop the bending moment diagram.

MECHANICSOF MATERIALS

Sample Problem 5.5

SOLUTION:

- Taking the entire beam as a free body, determine the reactions at C.

$$
\begin{array}{ll}
\sum F_{y}=0=-\frac{1}{2} w_{0} a+R_{C} & R_{C}=\frac{1}{2} w_{0} a \\
\sum M_{C}=0=\frac{1}{2} w_{0} a\left(L-\frac{a}{3}\right)+M_{C} & M_{C}=-\frac{1}{2} w_{0} a\left(L-\frac{a}{3}\right)
\end{array}
$$

Results from integration of the load and shear distributions should be equivalent.

- Apply the relationship between shear and load to develop the shear diagram.

$$
\begin{aligned}
& V_{B}-V_{A}=-\int_{0}^{a} w_{0}\left(1-\frac{x}{a}\right) d x=-\left[w_{0}\left(x-\frac{x^{2}}{2 a}\right)\right]_{0}^{a} \\
& V_{B}=-\frac{1}{2} w_{0} a=-(\text { area under load curve })
\end{aligned}
$$

- No change in shear between B and C.
- Compatible with free body analysis

MECHANICSOF MATERIALS

Sample Problem 5.5

- Apply the relationship between bending moment and shear to develop the bending moment diagram.

$$
\begin{aligned}
& M_{B}-M_{A}=\int_{0}^{a}\left(-w_{0}\left(x-\frac{x^{2}}{2 a}\right)\right) d x=\left[-w_{0}\left(\frac{x^{2}}{2}-\frac{x^{3}}{6 a}\right)\right]_{0}^{a} \\
& M_{B}=-\frac{1}{3} w_{0} a^{2} \\
& M_{B}-M_{C}=\int_{a}^{L}\left(-\frac{1}{2} w_{0} a\right) d x=-\frac{1}{2} w_{0} a(L-a) \\
& M_{C}=-\frac{1}{6} w_{0} a(3 L-a)=\frac{a w_{0}}{2}\left(L-\frac{a}{3}\right)
\end{aligned}
$$

Results at C are compatible with free-body analysis

Design of Prismatic Beams for Bending

- The largest normal stress is found at the surface where the maximum bending moment occurs.

$$
\sigma_{m}=\frac{|M|_{\max } c}{I}=\frac{|M|_{\max }}{S}
$$

- A safe design requires that the maximum normal stress be less than the allowable stress for the material used. This criteria leads to the determination of the minimum acceptable section modulus.

$$
\begin{aligned}
& \sigma_{m} \leq \sigma_{\text {all }} \\
& S_{\min }=\frac{|M|_{\max }}{\sigma_{\text {all }}}
\end{aligned}
$$

- Among beam section choices which have an acceptable section modulus, the one with the smallest weight per unit length or cross sectional area will be the least expensive and the best choice.

Design of Prismatic Beams for Bending

- Determine oall (If oall is the same for tension and compresion then follow 1,2,3 - Otherwise consider 4 in step 2)
- 1-Draw shear and bending-moment diagrams and determine $|\mathrm{M}| \max$
- 2-Determine Smin
- 3-Find the dimentions of the beam to use: b, h for $S>S_{\min }$
- 4-Select the beam section so that $\sigma \mathrm{m}<=\sigma$ all for tensile and compressive stresses.

MECHANICS OF MATERIALS

Sample Problem 5.7

SOLUTION:

- Considering the entire beam as a freebody, determine the reactions at A and B.
- Develop the shear diagram for the beam and load distribution. From the diagram, determine the maximum bending moment.
- Determine the minimum acceptable beam section modulus. Find the value for the h.

MECHANICSOF MATERIALS

Sample Problem 5.7

- Considering the entire beam as a free-body

$$
\begin{aligned}
\sum M_{A} & =0=B(2.4 \mathrm{~m})-(14.4 \mathrm{kN})(1.2 \mathrm{~m})-(20 \mathrm{kN})(3.6 \mathrm{~m}) \\
B & =37.2 \mathrm{kN}=\mathrm{Vc} \\
\sum F_{y} & =0=A_{y}+37.2 \mathrm{kN}-14.4 \mathrm{kN}-20 \mathrm{kN} \\
A_{y} & =-2.8 \mathrm{kN}=\mathrm{V}_{\mathrm{A}}
\end{aligned}
$$

- Plot shear diagram and determine Mmax.
$V_{B}-V_{A}=-($ area under load curve $)=-(6 \mathrm{kN} / \mathrm{m})(2.4 \mathrm{~m})=-14.4 \mathrm{kN}$
$V_{B}=V_{A}-14-4=-2.8 k N-14.4 k N=-17.2 k N$
$V_{B}=-17.2 \mathrm{kN}$
- $\mathrm{MA}_{\mathrm{A}}=\mathrm{Mc}=0$, Between A and B, M decreases an amount equal to area VAB , and between B and C in increases the same amount. Thus the $|\mathrm{M}|$ max $=24 \mathrm{kN}$.m

$$
\begin{aligned}
& |S|_{\min }=\frac{|M|_{\max }}{\sigma_{\text {all }}}=\frac{24 \mathrm{kN} \cdot \mathrm{~m}}{12 M P a}=2 \times 10^{6} \mathrm{~mm}^{3} \\
& \frac{1}{6} b h^{2} \geq S_{\min } \Rightarrow \frac{1}{6}(90 \mathrm{~mm}) h^{2} \geq 2 \times 10^{6} \mathrm{~mm}^{3} \Rightarrow h \geq 365.2 \mathrm{~mm}
\end{aligned}
$$

